z-logo
open-access-imgOpen Access
Existence and asymptotical behavior of positive solutions for the Schrödinger-Poisson system with double quasi-linear terms
Author(s) -
Xueqin Peng,
Gao Jia
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021134
Subject(s) - mathematics , combinatorics , arithmetic
In this paper, we consider the following Schrödinger-Poisson system with double quasi-linear terms\begin{document}$ \begin{equation*} \label{1.1} \begin{cases} -\Delta u+V(x)u+\phi u-\frac{1}{2}u\Delta u^2 = \lambda f(x,u),\; &\; {\rm{in}}\; \mathbb{R}^{3},\\ -\triangle\phi-\varepsilon^4\Delta_4\phi = u^{2},\; &\; {\rm{in}}\; \mathbb{R}^{3},\\ \end{cases} \end{equation*} $\end{document}where \begin{document}$ \lambda,\varepsilon $\end{document} are positive parameters. Under suitable assumptions on \begin{document}$ V $\end{document} and \begin{document}$ f $\end{document} , we prove that the above system admits at least one pair of positive solutions for \begin{document}$ \lambda $\end{document} large by using perturbation method and truncation technique. Furthermore, we research the asymptotical behavior of solutions with respect to the parameters \begin{document}$ \lambda $\end{document} and \begin{document}$ \varepsilon $\end{document} respectively. These results extend and improve some existing results in the literature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here