z-logo
open-access-imgOpen Access
Global solvability to a singular chemotaxis-consumption model with fast and slow diffusion and logistic source
Author(s) -
Zhou Lu,
Handong Wang,
Jin Woo Chang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021122
Subject(s) - combinatorics , mathematics , nabla symbol , omega , bounded function , physics , mathematical analysis , quantum mechanics
In this paper, we consider the following chemotaxis-consumption model with porous medium diffusion and singular sensitivity\begin{document}$ \begin{align*} \left\{ \begin{aligned} &u_{t} = \Delta u^{m}-\chi \mathrm{div}(\frac{u}{v}\nabla v)+\mu u(1-u), \\ &v_{t} = \Delta v-u^{r}v, \end{aligned}\right. \end{align*} $\end{document}in a bounded domain \begin{document}$ \Omega\subset\mathbb R^N $\end{document} ( \begin{document}$ N\ge 2 $\end{document} ) with zero-flux boundary conditions. It is shown that if \begin{document}$ r<\frac{4}{N+2} $\end{document} , for arbitrary case of fast diffusion ( \begin{document}$ m\le 1 $\end{document} ) and slow diffusion \begin{document}$ (m>1) $\end{document} , this problem admits a locally bounded global weak solution. It is worth mentioning that there are no smallness restrictions on the initial datum and chemotactic coefficient.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here