Global solvability to a singular chemotaxis-consumption model with fast and slow diffusion and logistic source
Author(s) -
Langhao Zhou,
Handong Wang,
Chunhua Jin
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021122
Subject(s) - combinatorics , mathematics , nabla symbol , omega , bounded function , physics , mathematical analysis , quantum mechanics
In this paper, we consider the following chemotaxis-consumption model with porous medium diffusion and singular sensitivity\begin{document}$ \begin{align*} \left\{ \begin{aligned} &u_{t} = \Delta u^{m}-\chi \mathrm{div}(\frac{u}{v}\nabla v)+\mu u(1-u), \\ &v_{t} = \Delta v-u^{r}v, \end{aligned}\right. \end{align*} $\end{document}in a bounded domain \begin{document}$ \Omega\subset\mathbb R^N $\end{document} ( \begin{document}$ N\ge 2 $\end{document} ) with zero-flux boundary conditions. It is shown that if \begin{document}$ r<\frac{4}{N+2} $\end{document} , for arbitrary case of fast diffusion ( \begin{document}$ m\le 1 $\end{document} ) and slow diffusion \begin{document}$ (m>1) $\end{document} , this problem admits a locally bounded global weak solution. It is worth mentioning that there are no smallness restrictions on the initial datum and chemotactic coefficient.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom