
Global solvability to a singular chemotaxis-consumption model with fast and slow diffusion and logistic source
Author(s) -
Zhou Lu,
Handong Wang,
Jin Woo Chang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021122
Subject(s) - combinatorics , mathematics , nabla symbol , omega , bounded function , physics , mathematical analysis , quantum mechanics
In this paper, we consider the following chemotaxis-consumption model with porous medium diffusion and singular sensitivity\begin{document}$ \begin{align*} \left\{ \begin{aligned} &u_{t} = \Delta u^{m}-\chi \mathrm{div}(\frac{u}{v}\nabla v)+\mu u(1-u), \\ &v_{t} = \Delta v-u^{r}v, \end{aligned}\right. \end{align*} $\end{document}in a bounded domain \begin{document}$ \Omega\subset\mathbb R^N $\end{document} ( \begin{document}$ N\ge 2 $\end{document} ) with zero-flux boundary conditions. It is shown that if \begin{document}$ r<\frac{4}{N+2} $\end{document} , for arbitrary case of fast diffusion ( \begin{document}$ m\le 1 $\end{document} ) and slow diffusion \begin{document}$ (m>1) $\end{document} , this problem admits a locally bounded global weak solution. It is worth mentioning that there are no smallness restrictions on the initial datum and chemotactic coefficient.