z-logo
open-access-imgOpen Access
On the family of cubic parabolic polynomials
Author(s) -
Alexandre Alonso Alves,
Mostafa Salarinoghabi
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021121
Subject(s) - mathematics , combinatorics , iterated function , arithmetic , mathematical analysis
For a sequence \begin{document}$ (a_n) $\end{document} of complex numbers we consider the cubic parabolic polynomials \begin{document}$ f_n(z) = z^3+a_n z^2+z $\end{document} and the sequence \begin{document}$ (F_n) $\end{document} of iterates \begin{document}$ F_n = f_n\circ\dots\circ f_1 $\end{document} . The Fatou set \begin{document}$ \mathcal{F}_0 $\end{document} is the set of all \begin{document}$ z\in\hat{\mathbb{C}} $\end{document} such that the sequence \begin{document}$ (F_n) $\end{document} is normal. The complement of the Fatou set is called the Julia set and denoted by \begin{document}$ \mathcal{J}_0 $\end{document} . The aim of this paper is to study some properties of \begin{document}$ \mathcal{J}_0 $\end{document} . As a particular case, when the sequence \begin{document}$ (a_n) $\end{document} is constant, \begin{document}$ a_n = a $\end{document} , then the iteration \begin{document}$ F_n $\end{document} becomes the classical iteration \begin{document}$ f^n $\end{document} where \begin{document}$ f(z) = z^3+a z^2+z $\end{document} . The connectedness locus, \begin{document}$ M $\end{document} , is the set of all \begin{document}$ a\in\mathbb{C} $\end{document} such that the Julia set is connected. In this paper we investigate some symmetric properties of \begin{document}$ M $\end{document} as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom