z-logo
open-access-imgOpen Access
On the family of cubic parabolic polynomials
Author(s) -
Alexandre Alonso Alves,
Mostafa Salarinoghabi
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021121
Subject(s) - mathematics , combinatorics , iterated function , arithmetic , mathematical analysis
For a sequence \begin{document}$ (a_n) $\end{document} of complex numbers we consider the cubic parabolic polynomials \begin{document}$ f_n(z) = z^3+a_n z^2+z $\end{document} and the sequence \begin{document}$ (F_n) $\end{document} of iterates \begin{document}$ F_n = f_n\circ\dots\circ f_1 $\end{document} . The Fatou set \begin{document}$ \mathcal{F}_0 $\end{document} is the set of all \begin{document}$ z\in\hat{\mathbb{C}} $\end{document} such that the sequence \begin{document}$ (F_n) $\end{document} is normal. The complement of the Fatou set is called the Julia set and denoted by \begin{document}$ \mathcal{J}_0 $\end{document} . The aim of this paper is to study some properties of \begin{document}$ \mathcal{J}_0 $\end{document} . As a particular case, when the sequence \begin{document}$ (a_n) $\end{document} is constant, \begin{document}$ a_n = a $\end{document} , then the iteration \begin{document}$ F_n $\end{document} becomes the classical iteration \begin{document}$ f^n $\end{document} where \begin{document}$ f(z) = z^3+a z^2+z $\end{document} . The connectedness locus, \begin{document}$ M $\end{document} , is the set of all \begin{document}$ a\in\mathbb{C} $\end{document} such that the Julia set is connected. In this paper we investigate some symmetric properties of \begin{document}$ M $\end{document} as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here