z-logo
open-access-imgOpen Access
Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation
Author(s) -
Yang Lin,
Yejuan Wang,
Tomás Caraballo
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021093
Subject(s) - bounded function , attractor , mathematics , combinatorics , mathematical analysis
In this paper we investigate the regularity of global attractors and of exponential attractors for two dimensional quasi-geostrophic equations with fractional dissipation in \begin{document}$ H^{2\alpha+s}(\mathbb{T}^2) $\end{document} with \begin{document}$ \alpha>\frac{1}{2} $\end{document} and \begin{document}$ s>1. $\end{document} We prove the existence of \begin{document}$ (H^{2\alpha^-+s}(\mathbb{T}^2),H^{2\alpha+s}(\mathbb{T}^2)) $\end{document} -global attractor \begin{document}$ \mathcal{A}, $\end{document} that is, \begin{document}$ \mathcal{A} $\end{document} is compact in \begin{document}$ H^{2\alpha+s}(\mathbb{T}^2) $\end{document} and attracts all bounded subsets of \begin{document}$ H^{2\alpha^-+s}(\mathbb{T}^2) $\end{document} with respect to the norm of \begin{document}$ H^{2\alpha+s}(\mathbb{T}^2). $\end{document} The asymptotic compactness of solutions in \begin{document}$ H^{2\alpha+s}(\mathbb{T}^2) $\end{document} is established by using commutator estimates for nonlinear terms, the spectral decomposition of solutions and new estimates of higher order derivatives. Furthermore, we show the existence of the exponential attractor in \begin{document}$ H^{2\alpha+s}(\mathbb{T}^2), $\end{document} whose compactness, boundedness of the fractional dimension and exponential attractiveness for the bounded subset of \begin{document}$ H^{2\alpha^-+s}(\mathbb{T}^2) $\end{document} are all in the topology of \begin{document}$ H^{2\alpha+s}(\mathbb{T}^2). $\end{document}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here