z-logo
open-access-imgOpen Access
On a quasilinear fully parabolic two-species chemotaxis system with two chemicals
Author(s) -
Xu Pan,
Liangchen Wang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021047
Subject(s) - nabla symbol , omega , combinatorics , homogeneous , physics , mathematics , quantum mechanics
This paper deals with the following two-species chemotaxis system with nonlinear diffusion, sensitivity, signal secretion and (without or with) logistic source\begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_t = \nabla \cdot (D_1(u)\nabla u - S_1(u)\nabla v) + f_{1}(u),\quad &x\in\Omega,\quad t>0,\\ v_t = \Delta v-v+g_1(w),\quad &x\in\Omega,\quad t>0,\\ w_t = \nabla \cdot (D_2(w)\nabla w - S_2(w)\nabla z) + f_{2}(w),\quad &x\in \Omega,\quad t>0,\\ z_t = \Delta z-z+g_2(u),\quad &x\in\Omega,\quad t>0, \end{array} \right. \end{eqnarray*} $\end{document}under homogeneous Neumann boundary conditions in a bounded domain \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} with \begin{document}$ n\geq2 $\end{document} . The diffusion functions \begin{document}$ D_{i}(s) \in C^{2}([0,\infty)) $\end{document} and the chemotactic sensitivity functions \begin{document}$ S_{i}(s) \in C^{2}([0,\infty)) $\end{document} are given by\begin{document}$ \begin{equation*} \begin{split} D_{i}(s) \geq C_{d_{i}} (1+s)^{-\alpha_i} \quad \text{and} \quad 0 < S_{i}(s) \leq C_{s_{i}} s (1+s)^{\beta_{i}-1} \text{ for all } s\geq0, \end{split} \end{equation*} $\end{document}where \begin{document}$ C_{d_{i}},C_{s_{i}}>0 $\end{document} and \begin{document}$ \alpha_i,\beta_{i} \in \mathbb{R} $\end{document}\begin{document}$ (i = 1,2) $\end{document} . The logistic source functions \begin{document}$ f_{i}(s) \in C^{0}([0,\infty)) $\end{document} and the nonlinear signal secretion functions \begin{document}$ g_{i}(s) \in C^{1}([0,\infty)) $\end{document} are given by\begin{document}$ \begin{equation*} \begin{split} f_{i}(s) \leq r_{i}s - \mu_{i} s^{k_{i}} \quad \text{and} \quad g_{i}(s)\leq s^{\gamma_{i}} \text{ for all } s\geq0, \end{split} \end{equation*} $\end{document}where \begin{document}$ r_{i} \in \mathbb{R} $\end{document} , \begin{document}$ \mu_{i},\gamma_{i} > 0 $\end{document} and \begin{document}$ k_{i} > 1 $\end{document}\begin{document}$ (i = 1,2) $\end{document} . With the assumption of proper initial data regularity, the global boundedness of solution is established under the some specific conditions with or without the logistic functions \begin{document}$ f_{i}(s) $\end{document} . Moreover, in case \begin{document}$ r_{i}>0 $\end{document} , for the large time behavior of the smooth bounded solution, by constructing the appropriate energy functions, under the conditions \begin{document}$ \mu_{i} $\end{document} are sufficiently large, it is shown that the global bounded solution exponentially converges to \begin{document}$ \left((\frac{r_{1}}{\mu_{1}})^{\frac{1}{k_{1}-1}}, (\frac{r_{2}}{\mu_{2}})^{\frac{\gamma_{1}}{k_{2}-1}}, (\frac{r_{2}}{\mu_{2}})^{\frac{1}{k_{2}-1}}, (\frac{r_{1}}{\mu_{1}})^{\frac{\gamma_{2}}{k_{1}-1}}\right) $\end{document} as \begin{document}$ t\rightarrow\infty $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom