z-logo
open-access-imgOpen Access
Global boundedness for a $ \mathit{\boldsymbol{N}} $-dimensional two species cancer invasion haptotaxis model with tissue remodeling
Author(s) -
Feng Dai,
Bin Liu
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021044
Subject(s) - nabla symbol , combinatorics , omega , bounded function , domain (mathematical analysis) , physics , mathematics , mathematical analysis , quantum mechanics
This paper is concerned with the two species cancer invasion haptotaxis model with tissue remodeling\begin{document}$ \begin{equation} \begin{cases} c_{1t} = \Delta c_1-\chi_1\nabla\cdot(c_1\nabla v)-\mu_{\rm EMT}c_1+\mu_1c_1(r_1-c_1^\kappa-c_2-v),\\ c_{2t} = \Delta c_2-\chi_2\nabla\cdot(c_2\nabla v)+\mu_{\rm EMT}c_1+\mu_2c_2(r_2-c_1-c_2^\kappa-v),\\ \tau m_t = \Delta m+c_1+c_2-m,\\ v_t = -mv+\eta v(1-c_1-c_2-v) \end{cases}\nonumber \end{equation} $\end{document}in a bounded and smooth domain \begin{document}$ \Omega\subset\mathbb{R}^N\;(N\geq1) $\end{document} with zero-flux boundary conditions for \begin{document}$ c_1,c_2 $\end{document} and \begin{document}$ m $\end{document} , where \begin{document}$ \chi_i,\mu_i,r_i>0\;(i = 1,2) $\end{document} , \begin{document}$ \eta>0 $\end{document} , \begin{document}$ \kappa\geq1 $\end{document} , \begin{document}$ \tau\in\{0,1\} $\end{document} , and \begin{document}$ \mu_{\rm EMT} = \mu_{ \rm EMT}\left(c_1,c_2,m,v\right):[0,\infty)^4\rightarrow [0,\infty) $\end{document} is the epithelial-mesenchymal transition rate function such that \begin{document}$ \mu_{\rm EMT}\leq\mu_M $\end{document} with some constant \begin{document}$ \mu_M>0 $\end{document} . When \begin{document}$ \kappa = 1 $\end{document} and \begin{document}$ N = 3 $\end{document} , by rasing the coupled a priori estimates of \begin{document}$ c_1 $\end{document} and \begin{document}$ c_2 $\end{document} in the following way \begin{document}$ L^1(\Omega)\rightarrow L^2(\Omega)\rightarrow L^p(\Omega)\rightarrow L^\infty(\Omega) $\end{document} with any \begin{document}$ p>2 $\end{document} , it is shown that for some appropriately regular and small initial data, the associated initial-boundary value problem possesses a unique globally bounded classical solution for suitably small \begin{document}$ r_i $\end{document} and \begin{document}$ \mu_M $\end{document} . When \begin{document}$ \kappa>1 $\end{document} and \begin{document}$ N\geq1 $\end{document} , by rasing the coupled a priori estimates of \begin{document}$ c_1 $\end{document} and \begin{document}$ c_2 $\end{document} from \begin{document}$ L^1(\Omega) $\end{document} to \begin{document}$ L^p(\Omega) $\end{document} with any \begin{document}$ p>1 $\end{document} , then to \begin{document}$ L^\infty(\Omega) $\end{document} , it is proved that for any reasonably regular initial data, the corresponding initial-boundary value problem admits a unique globally bounded classical solution for arbitrary \begin{document}$ r_i $\end{document} and \begin{document}$ \mu_M $\end{document} . The result for \begin{document}$ \kappa = 1 $\end{document} complements previously known one, and the result for \begin{document}$ \kappa>1 $\end{document} is new.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom