z-logo
open-access-imgOpen Access
Phase portraits of the Higgins–Selkov system
Author(s) -
Jaume Llibre,
Marzieh Mousavi
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021039
Subject(s) - combinatorics , mathematics , arithmetic
In this paper we study the dynamics of the Higgins–Selkov system\begin{document}$ \begin{equation*} \dot{x} = 1-xy^\gamma, \quad\dot{y} = \alpha y(xy^{\gamma -1}-1), \end{equation*} $\end{document}where \begin{document}$ \alpha $\end{document} is a real parameter and \begin{document}$ \gamma>1 $\end{document} is an integer. We classify the phase portraits of this system for \begin{document}$ \gamma = 3, 4, 5, 6, $\end{document} in the Poincaré disc for all the values of the parameter \begin{document}$ \alpha $\end{document} . Moreover, we determine in function of the parameter \begin{document}$ \alpha $\end{document} the regions of the phase space with biological meaning.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here