z-logo
open-access-imgOpen Access
Global attractors of two layer baroclinic quasi-geostrophic model
Author(s) -
Yanhong Zhang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021023
Subject(s) - omega , mathematics , combinatorics , attractor , physics , mathematical analysis , quantum mechanics
We study the dynamics of a two-layer baroclinic quasi-geostrophic model. We prove that the semigroup \begin{document}$ \{S(t)\}_{t\geq 0} $\end{document} associated with the solutions of the model has a global attractor in both \begin{document}$ {{\dot H}_{p}}^1(\Omega) $\end{document} and \begin{document}$ {{\dot H}_{p}}^2(\Omega) $\end{document} . Also we show that for any viscosity \begin{document}$ \mu>0 $\end{document} , there is an open and dense set of forcing \begin{document}$ \mathcal G\subset{{\dot H}_{p}}^0(\Omega) $\end{document} such that for each \begin{document}$ G = (g_1, g_2)\in \mathcal G $\end{document} , the set \begin{document}$ S(G, \mu) \subset {{\dot H}_{p}}^4(\Omega) $\end{document} of the steady state problem is non–empty and finite.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here