
Global attractors of two layer baroclinic quasi-geostrophic model
Author(s) -
Yanhong Zhang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021023
Subject(s) - omega , mathematics , combinatorics , attractor , physics , mathematical analysis , quantum mechanics
We study the dynamics of a two-layer baroclinic quasi-geostrophic model. We prove that the semigroup \begin{document}$ \{S(t)\}_{t\geq 0} $\end{document} associated with the solutions of the model has a global attractor in both \begin{document}$ {{\dot H}_{p}}^1(\Omega) $\end{document} and \begin{document}$ {{\dot H}_{p}}^2(\Omega) $\end{document} . Also we show that for any viscosity \begin{document}$ \mu>0 $\end{document} , there is an open and dense set of forcing \begin{document}$ \mathcal G\subset{{\dot H}_{p}}^0(\Omega) $\end{document} such that for each \begin{document}$ G = (g_1, g_2)\in \mathcal G $\end{document} , the set \begin{document}$ S(G, \mu) \subset {{\dot H}_{p}}^4(\Omega) $\end{document} of the steady state problem is non–empty and finite.