z-logo
open-access-imgOpen Access
Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models
Author(s) -
Yanan Li,
Zhijian Yang,
Na Feng
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021018
Subject(s) - combinatorics , mathematics , attractor , physics , mathematical analysis
The paper investigates the existence and the continuity of uniform attractors for the non-autonomous Kirchhoff wave equations with strong damping: \begin{document}$ u_{tt}-(1+\epsilon\|\nabla u\|^{2})\Delta u-\Delta u_{t}+f(u) = g(x,t) $\end{document} , where \begin{document}$ \epsilon\in [0,1] $\end{document} is an extensibility parameter. It shows that when the nonlinearity \begin{document}$ f(u) $\end{document} is of optimal supercritical growth \begin{document}$ p: \frac{N+2}{N-2} = p^*<p<p^{**} = \frac{N+4}{(N-4)^+} $\end{document} : (ⅰ) the related evolution process has in natural energy space \begin{document}$ \mathcal{H} = (H^1_0\cap L^{p+1})\times L^2 $\end{document} a compact uniform attractor \begin{document}$ \mathcal{A}^{\epsilon}_{\Sigma} $\end{document} for each \begin{document}$ \epsilon\in [0,1] $\end{document} ; (ⅱ) the family of compact uniform attractor \begin{document}$ \{\mathcal{A}^{\epsilon}_{\Sigma}\}_{\epsilon\in [0,1]} $\end{document} is continuous on \begin{document}$ \epsilon $\end{document} in a residual set \begin{document}$ I^*\subset [0,1] $\end{document} in the sense of \begin{document}$ \mathcal{H}_{ps} ( = (H^1_0\cap L^{p+1,w})\times L^2) $\end{document} -topology; (ⅲ)\begin{document}$ \{\mathcal{A}^{\epsilon}_{\Sigma}\}_{\epsilon\in [0,1]} $\end{document} is upper semicontinuous on \begin{document}$ \epsilon\in [0,1] $\end{document} in \begin{document}$ \mathcal{H}_{ps} $\end{document} -topology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom