z-logo
open-access-imgOpen Access
Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity
Author(s) -
Hui Zhao,
Zhengrong Liu,
Yiren Chen
Publication year - 2020
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021011
Subject(s) - nabla symbol , omega , combinatorics , physics , domain (mathematical analysis) , mathematics , mathematical analysis , quantum mechanics
In this paper, we shall study the initial-boundary value problem of a chemotaxis model with signal-dependent diffusion and sensitivity as follows\begin{document}$ \begin{cases} u_t = \nabla\cdot(\gamma(v)\nabla u-\chi(v)u\nabla v)+\alpha u F(w) +\theta u-\beta u^2, &x\in \Omega, \; \; t>0,\\ v_t = D\Delta v+u-v,& x\in \Omega, \; \; t>0,\\ w_t = \Delta w-uF(w),& x\in \Omega, \; \; t>0,\\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = \frac{\partial w}{\partial \nu} = 0,&x\in \partial\Omega, \; \; t>0,\\ u(x,0) = u_0(x), v(x,0) = v_0(x),w(x,0) = w_0(x), & x\in\Omega, \end{cases} \;\;(*)$\end{document}in a bounded domain \begin{document}$ \Omega\subset \mathbb{R}^2 $\end{document} with smooth boundary, where \begin{document}$ \alpha,\beta, D $\end{document} are positive constants, \begin{document}$ \theta\in \mathbb{R} $\end{document} and \begin{document}$ \nu $\end{document} denotes the outward normal vector of \begin{document}$ \partial \Omega $\end{document} . The functions \begin{document}$ \chi(v),\gamma(v) $\end{document} and \begin{document}$ F(v) $\end{document} satisfy ● \begin{document}$ (\gamma(v),\chi(v))\in [C^2[0,\infty)]^2 $\end{document} with \begin{document}$ \gamma(v)>0,\gamma'(v)<0 $\end{document} and \begin{document}$ \frac{|\chi(v)|+|\gamma'(v)|}{\gamma(v)} $\end{document} is bounded; ● \begin{document}$ F(w)\in C^1([0,\infty)), F(0) = 0,F(w)>0 \ \mathrm{in}\; (0,\infty)\; \mathrm{and}\; F'(w)>0 \ \mathrm{on}\ \ [0,\infty). $\end{document} We first prove that the existence of globally bounded solution of system (*) based on the method of weighted energy estimates. Moreover, by constructing Lyapunov functional, we show that the solution \begin{document}$ (u,v,w) $\end{document} will converge to \begin{document}$ (0,0,w_*) $\end{document} in \begin{document}$ L^\infty $\end{document} with some \begin{document}$ w_*\geq0 $\end{document} as time tends to infinity in the case of \begin{document}$ \theta\leq 0 $\end{document} , while if \begin{document}$ \theta>0 $\end{document} , the solution \begin{document}$ (u,v,w) $\end{document} will asymptotically converge to \begin{document}$ (\frac{\theta}{\beta},\frac{\theta}{\beta},0) $\end{document} in \begin{document}$ L^\infty $\end{document} -norm provided \begin{document}$ D>\max\limits_{0\leq v\leq \infty}\frac{\theta|\chi(v)|^2}{16\beta^2\gamma(v)} $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom