Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces
Author(s) -
Xing Wu,
Keqin Su
Publication year - 2020
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021002
Subject(s) - space (punctuation) , product (mathematics) , mathematics , combinatorics , hyperbolic space , mathematical analysis , geometry , computer science , operating system
In this paper, we study the qualitative behavior of hyperbolic system arising from chemotaxis models. Firstly, by establishing a new product estimates in multi-dimensional Besov space \begin{document}$ \dot{B}_{2, r}^{\frac d2}(\mathbb{R}^d)(1\leq r\leq \infty) $\end{document} , we establish the global small solutions in multi-dimensional Besov space \begin{document}$ \dot{B}_{2, r}^{\frac d2-1}(\mathbb{R}^d) $\end{document} by the method of energy estimates. Then we study the asymptotic behavior and obtain the optimal decay rate of the global solutions if the initial data are small in \begin{document}$ B_{2, 1}^{\frac{d}{2}-1}(\mathbb{R}^d)\cap \dot{B}_{1, \infty}^0(\mathbb{R}^d) $\end{document} .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom