
Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation
Author(s) -
Yuqian Zhou,
Qian Liu
Publication year - 2016
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2016036
Subject(s) - homoclinic orbit , mathematics , mathematical analysis , invariant manifold , bifurcation , korteweg–de vries equation , phase space , phase portrait , invariant (physics) , burgers' equation , center manifold , homoclinic bifurcation , bounded function , hamiltonian system , singular perturbation , manifold (fluid mechanics) , mathematical physics , partial differential equation , physics , hopf bifurcation , nonlinear system , quantum mechanics , thermodynamics , mechanical engineering , engineering