z-logo
open-access-imgOpen Access
Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials
Author(s) -
Liejun Shen,
Marco Squassina,
Minbo Yang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2022059
Subject(s) - combinatorics , physics , mathematics , arithmetic
We study a class of gauged nonlinear Schrödinger equations in the plane\begin{document}$ \left\{ \begin{array}{l} -\Delta u+V(|x|) u+\lambda\bigg(\int_{|x|}^\infty \frac{h_u(s)}{s}u^2(s)ds+\frac{h_u^2(|x|)}{|x|^2} \bigg)u\\\qquad \, = K(|x|)f(u)+\mu g(|x|)|u|^{q-2}u, \\ u(x) = u(|x|) \; {\rm{in}}\; \mathbb{R}^2, \\\\ \end{array} \right. $\end{document}where \begin{document}$ h_u(s) = \int_0^s\frac{r}{2}u^2(r)dr $\end{document} , \begin{document}$ \lambda,\mu>0 $\end{document} are constants, \begin{document}$ V(|x|) $\end{document} and \begin{document}$ K(|x|) $\end{document} are continuous functions vanishing at infinity. Assume that \begin{document}$ f $\end{document} is of critical exponential growth and \begin{document}$ g(x) = g(|x|) $\end{document} satisfies some technical assumptions with \begin{document}$ 1\leq q<2 $\end{document} , we obtain the existence of two nontrivial solutions via the Mountain-Pass theorem and Ekeland's variational principle. Moreover, with the help of the genus theory, we prove the existence of infinitely many solutions if \begin{document}$ f $\end{document} in addition is odd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom