z-logo
open-access-imgOpen Access
Elliptic systems with nonlinear diffusion and a convection term
Author(s) -
Lucio Boccardo,
Luigi Orsina
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2022056
Subject(s) - nabla symbol , omega , lambda , physics , combinatorics , diffusion , elliptic curve , mathematical physics , mathematical analysis , mathematics , thermodynamics , quantum mechanics
In this paper we prove existence (and summability properties) of solutions for the following elliptic system\begin{document}$ \left\{ \begin{array}{cl} -{\rm{div}}(A(x)\,{\nabla} u) + u^{{\lambda}} = -{\rm{div}}( u^{{\lambda}} \, M(x)\,{\nabla}\psi) + f(x)\,, & {\rm{in }}\; \Omega , \\ -{\rm{div}}(M(x)\,{\nabla}\psi) = u^{\rho}\,, & {\rm{in }}\; \Omega , \\ u = 0 = \psi & \;{\rm{on}}\; \partial\Omega , \end{array} \right. $\end{document}under some assumptions on \begin{document}$ {\lambda} > 0 $\end{document} , \begin{document}$ \rho > 0 $\end{document} and \begin{document}$ f(x) $\end{document} in \begin{document}$ L^{{m}}(\Omega) $\end{document} , \begin{document}$ m \geq 1 $\end{document} . "Return of the Patriarca" (see [ 3 ] )

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom