z-logo
open-access-imgOpen Access
The Neumann problem for a class of mixed complex Hessian equations
Author(s) -
Chuanqiang Chen,
Li Chen,
Xinqun Mei,
Xiang Ni
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2022049
Subject(s) - mathematics , combinatorics
In this paper, we consider the Neumann problem of a class of mixed complex Hessian equations \begin{document}$ \sigma_k(\partial \bar{\partial} u) = \sum\limits _{l = 0}^{k-1} \alpha_l(z) \sigma_l (\partial \bar{\partial} u) $\end{document} with \begin{document}$ 2 \leq k \leq n $\end{document} , and establish the global \begin{document}$ C^1 $\end{document} estimates and reduce the global second derivative estimate to the estimate of double normal second derivatives on the boundary. In particular, we can prove the global \begin{document}$ C^2 $\end{document} estimates and the existence theorems when \begin{document}$ k = n $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom