z-logo
open-access-imgOpen Access
Local behavior of solutions to a fractional equation with isolated singularity and critical Serrin exponent
Author(s) -
Juncheng Wei,
Ke Wu
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2022044
Subject(s) - fractional laplacian , exponent , mathematics , combinatorics , arithmetic , mathematical analysis , philosophy , linguistics
In this paper, we study the local behavior of positive singular solutions to the equation\begin{document}$ \begin{equation*} (-\Delta)^{\sigma}u = u^{\frac{n}{n-2\sigma}}\quad \;{\rm{in }}\;B_{1}\backslash\{0\} \end{equation*} $\end{document}where \begin{document}$ (-\Delta)^{\sigma} $\end{document} is the fractional Laplacian operator, \begin{document}$ 0<\sigma<1 $\end{document} and \begin{document}$ \frac{n}{n-2\sigma} $\end{document} is the critical Serrin exponent. We show that either \begin{document}$ u $\end{document} can be extended as a continuous function near the origin or there exist two positive constants \begin{document}$ c_{1} $\end{document} and \begin{document}$ c_{2} $\end{document} such that\begin{document}$ \begin{equation*} c_{1}|x|^{2\sigma-n}(-\ln{|x|})^{-\frac{n-2\sigma}{2\sigma}}\leq u(x)\leq c_{2}|x|^{2\sigma-n}(-\ln{|x|})^{-\frac{n-2\sigma}{2\sigma}}\quad\;{\rm{in }}\; B_{1}\backslash\{0\}. \end{equation*} $\end{document}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom