z-logo
open-access-imgOpen Access
Liouville-type theorem for high order degenerate Lane-Emden system
Author(s) -
Yuxia Guo,
Ting Liu
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021184
Subject(s) - order (exchange) , combinatorics , mathematics , type (biology) , ecology , finance , economics , biology
In this paper, we are concerned with the following high order degenerate elliptic system:\begin{document}$\left\{ \begin{align} & {{(-A)}^{m}}u={{v}^{p}} \\ & {{(-A)}^{m}}v={{u}^{q}}\quad \text{ in }\mathbb{R}_{+}^{n+1}:=\left\{ (x,y)|x\in {{\mathbb{R}}^{n}},y>0 \right\}, \\ & u\ge 0,v\ge 0 \\ \end{align} \right.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$\end{document} where the operator \begin{document}$ A: = y\partial_{y}^2+a\partial_{y}+\Delta_{x}, \;a\geq 1 $\end{document} and \begin{document}$ n+2a>2m, m\in \mathbb{Z}^+,\;p,\,q\geq 1 $\end{document} . We prove the non-existence of positive smooth solutions for \begin{document}$ 1<p,\, q<\frac{n+2a+2m}{n+2a-2m} $\end{document} , and classify positive solutions for \begin{document}$ p = q = \frac{n+2a+2m}{n+2a-2m} $\end{document} . For \begin{document}$ \frac{1}{p+1}+\frac{1}{q+1}>\frac{n+2a-2m}{n+2a} $\end{document} , we show the non-existence of positive, ellipse-radial, smooth solutions. Moreover we prove the non-existence of positive smooth solutions for the high order degenerate elliptic system of inequalities \begin{document}$ (-A)^{m}u\geq v^p, (-A)^{m}v\geq u^q, u\geq 0, v\geq 0, $\end{document} in \begin{document}$ \mathbb{R}_+^{n+1} $\end{document} for either \begin{document}$ (n+2a-2m)q<\frac{n+2a}{p}+2m $\end{document} or \begin{document}$ (n+2a-2m)p<\frac{n+2a}{q}+2m $\end{document} with \begin{document}$ p,q>1 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom