z-logo
open-access-imgOpen Access
Liouville-type theorem for high order degenerate Lane-Emden system
Author(s) -
Yuxia Guo,
Ting Liu
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021184
Subject(s) - order (exchange) , combinatorics , mathematics , type (biology) , ecology , finance , economics , biology
In this paper, we are concerned with the following high order degenerate elliptic system:\begin{document}$\left\{ \begin{align} & {{(-A)}^{m}}u={{v}^{p}} \\ & {{(-A)}^{m}}v={{u}^{q}}\quad \text{ in }\mathbb{R}_{+}^{n+1}:=\left\{ (x,y)|x\in {{\mathbb{R}}^{n}},y>0 \right\}, \\ & u\ge 0,v\ge 0 \\ \end{align} \right.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$\end{document} where the operator \begin{document}$ A: = y\partial_{y}^2+a\partial_{y}+\Delta_{x}, \;a\geq 1 $\end{document} and \begin{document}$ n+2a>2m, m\in \mathbb{Z}^+,\;p,\,q\geq 1 $\end{document} . We prove the non-existence of positive smooth solutions for \begin{document}$ 1<p,\, q<\frac{n+2a+2m}{n+2a-2m} $\end{document} , and classify positive solutions for \begin{document}$ p = q = \frac{n+2a+2m}{n+2a-2m} $\end{document} . For \begin{document}$ \frac{1}{p+1}+\frac{1}{q+1}>\frac{n+2a-2m}{n+2a} $\end{document} , we show the non-existence of positive, ellipse-radial, smooth solutions. Moreover we prove the non-existence of positive smooth solutions for the high order degenerate elliptic system of inequalities \begin{document}$ (-A)^{m}u\geq v^p, (-A)^{m}v\geq u^q, u\geq 0, v\geq 0, $\end{document} in \begin{document}$ \mathbb{R}_+^{n+1} $\end{document} for either \begin{document}$ (n+2a-2m)q<\frac{n+2a}{p}+2m $\end{document} or \begin{document}$ (n+2a-2m)p<\frac{n+2a}{q}+2m $\end{document} with \begin{document}$ p,q>1 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here