Boltzmann-Grad limit of a hard sphere system in a box with isotropic boundary conditions
Author(s) -
Corentin Le Bihan
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021177
Subject(s) - domain (mathematical analysis) , combinatorics , mathematics , boundary (topology) , physics , mathematical analysis
In this paper we present a rigorous derivation of the Boltzmann equation in a compact domain with {isotropic} boundary conditions. We consider a system of \begin{document}$ N $\end{document} hard spheres of diameter \begin{document}$ \epsilon $\end{document} in a box \begin{document}$ \Lambda : = [0, 1]\times(\mathbb{R}/\mathbb{Z})^2 $\end{document} . When a particle meets the boundary of the domain, it is instantaneously reinjected into the box with a random direction, {but} conserving kinetic energy. We prove that the first marginal of the process converges in the scaling \begin{document}$ N\epsilon^2 = 1 $\end{document} , \begin{document}$ \epsilon\rightarrow 0 $\end{document} to the solution of the Boltzmann equation, with the same short time restriction of Lanford's classical theorem.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom