Sublacunary sets and interpolation sets for nilsequences
Author(s) -
Anh N. Le
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021175
Subject(s) - mathematics , combinatorics , bounded function , discrete mathematics , mathematical analysis
A set \begin{document}$ E \subset \mathbb{N} $\end{document} is an interpolation set for nilsequences if every bounded function on \begin{document}$ E $\end{document} can be extended to a nilsequence on \begin{document}$ \mathbb{N} $\end{document} . Following a theorem of Strzelecki, every lacunary set is an interpolation set for nilsequences. We show that sublacunary sets are not interpolation sets for nilsequences. Here \begin{document}$ \{r_n: n \in \mathbb{N}\} \subset \mathbb{N} $\end{document} with \begin{document}$ r_1 < r_2 < \ldots $\end{document} is sublacunary if \begin{document}$ \lim_{n \to \infty} (\log r_n)/n = 0 $\end{document} . Furthermore, we prove that the union of an interpolation set for nilsequences and a finite set is an interpolation set for nilsequences. Lastly, we provide a new class of interpolation sets for Bohr almost periodic sequences, and as a result, obtain a new example of interpolation set for \begin{document}$ 2 $\end{document} -step nilsequences which is not an interpolation set for Bohr almost periodic sequences.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom