z-logo
open-access-imgOpen Access
Quantitative destruction of invariant circles
Author(s) -
Lin Wang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021164
Subject(s) - mathematics , combinatorics , arithmetic
For area-preserving twist maps on the annulus, we consider the problem on quantitative destruction of invariant circles with a given frequency \begin{document}$ \omega $\end{document} of an integrable system by a trigonometric polynomial of degree \begin{document}$ N $\end{document} perturbation \begin{document}$ R_N $\end{document} with \begin{document}$ \|R_N\|_{C^r}<\epsilon $\end{document} . We obtain a relation among \begin{document}$ N $\end{document} , \begin{document}$ r $\end{document} , \begin{document}$ \epsilon $\end{document} and the arithmetic property of \begin{document}$ \omega $\end{document} , for which the area-preserving map admit no invariant circles with \begin{document}$ \omega $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom