z-logo
open-access-imgOpen Access
Topological mild mixing of all orders along polynomials
Author(s) -
Yang Cao,
Song Shao
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021150
Subject(s) - mathematics , combinatorics , mixing (physics) , physics , quantum mechanics
A minimal system \begin{document}$ (X,T) $\end{document} is topologically mildly mixing if for all non-empty open subsets \begin{document}$ U,V $\end{document} , \begin{document}$ \{n\in {\mathbb Z}: U\cap T^{-n}V\neq \emptyset\} $\end{document} is an IP \begin{document}$ ^* $\end{document} -set. In this paper we show that if a minimal system is topologically mildly mixing, then it is mild mixing of all orders along polynomials. That is, suppose that \begin{document}$ (X,T) $\end{document} is a topologically mildly mixing minimal system, \begin{document}$ d\in {\mathbb N} $\end{document} , \begin{document}$ p_1(n),\ldots, p_d(n) $\end{document} are integral polynomials with no \begin{document}$ p_i $\end{document} and no \begin{document}$ p_i-p_j $\end{document} constant, \begin{document}$ 1\le i\neq j\le d $\end{document} . Then for all non-empty open subsets \begin{document}$ U , V_1, \ldots, V_d $\end{document} , \begin{document}$ \{n\in {\mathbb Z}: U\cap T^{-p_1(n) }V_1\cap T^{-p_2(n)}V_2\cap \ldots \cap T^{-p_d(n) }V_d \neq \emptyset \} $\end{document} is an IP \begin{document}$ ^* $\end{document} -set. We also give the corresponding theorem for systems under abelian group actions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here