Open Access
Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis
Author(s) -
Guoqiang Ren,
Bin Liu
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021136
Subject(s) - nabla symbol , omega , combinatorics , domain (mathematical analysis) , mathematics , physics , mathematical analysis , quantum mechanics
In this work we consider a two-species predator-prey chemotaxis model\begin{document}$ \left\{ \begin{array}{lll} u_t = d_1\Delta u+\chi_1\nabla\cdot(u\nabla v)+u(a_1-b_{11}u-b_{12}v), &x\in \Omega, t>0, \\[0.2cm] v_t = d_2\Delta v-\chi_2\nabla\cdot(v\nabla u)+v(-a_2+b_{21}u-b_{22}v-b_{23}w), & x\in \Omega, t>0, \\[0.2cm] w_t = d_3\Delta w-\chi_3\nabla\cdot(w\nabla v)+w(-a_3+b_{32}v-b_{33}w), & x\in \Omega, t>0 \\ \end{array}\right.(\ast) $\end{document}in a bounded domain with smooth boundary. We prove that if (1.7)-(1.13) hold, the model ( \begin{document}$ \ast $\end{document} ) admits a global boundedness of classical solutions in any physically meaningful dimension. Moreover, we show that the global classical solutions \begin{document}$ (u,v,w) $\end{document} exponentially converges to constant stable steady state \begin{document}$ (u_\ast,v_\ast,w_\ast) $\end{document} . Inspired by [ 5 ], we employ the special structure of ( \begin{document}$ \ast $\end{document} ) and carefully balance the triple cross diffusion. Indeed, we introduced some functions and combined them in a way that allowed us to cancel the bad items.