z-logo
open-access-imgOpen Access
Realizing arbitrary $d$-dimensional dynamics by renormalization of $C^d$-perturbations of identity
Author(s) -
Bassam Fayad,
Maria Saprykina
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021129
Subject(s) - mathematics , combinatorics , arithmetic
Any \begin{document}$ C^d $\end{document} conservative map \begin{document}$ f $\end{document} of the \begin{document}$ d $\end{document} -dimensional unit ball \begin{document}$ {\mathbb B}^d $\end{document} , \begin{document}$ d\geq 2 $\end{document} , can be realized by renormalized iteration of a \begin{document}$ C^d $\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$ {\mathbb B}^d $\end{document} , arbitrarily close to identity in the \begin{document}$ C^d $\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$ C^d $\end{document} change of coordinates is exactly \begin{document}$ f $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here