z-logo
open-access-imgOpen Access
Realizing arbitrary $d$-dimensional dynamics by renormalization of $C^d$-perturbations of identity
Author(s) -
Bassam Fayad,
Maria Saprykina
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021129
Subject(s) - mathematics , combinatorics , arithmetic
Any \begin{document}$ C^d $\end{document} conservative map \begin{document}$ f $\end{document} of the \begin{document}$ d $\end{document} -dimensional unit ball \begin{document}$ {\mathbb B}^d $\end{document} , \begin{document}$ d\geq 2 $\end{document} , can be realized by renormalized iteration of a \begin{document}$ C^d $\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$ {\mathbb B}^d $\end{document} , arbitrarily close to identity in the \begin{document}$ C^d $\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$ C^d $\end{document} change of coordinates is exactly \begin{document}$ f $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom