z-logo
open-access-imgOpen Access
A log–exp elliptic equation in the plane
Author(s) -
Giovany M. Figueiredo,
Marcelo Montenegro,
Matheus F. Stapenhorst
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021125
Subject(s) - mathematics , combinatorics , bounded function , omega , physics , mathematical analysis , quantum mechanics
In this paper we show the existence of a nonnegative solution for a singular problem with logarithmic and exponential nonlinearity, namely \begin{document}$ -\Delta u = \log(u)\chi_{\{u>0\}} + \lambda f(u) $\end{document} in \begin{document}$ \Omega $\end{document} with \begin{document}$ u = 0 $\end{document} on \begin{document}$ \partial\Omega $\end{document} , where \begin{document}$ \Omega $\end{document} is a smooth bounded domain in \begin{document}$ \mathbb{R}^{2} $\end{document} . We replace the singular function \begin{document}$ \log(u) $\end{document} by a function \begin{document}$ g_\epsilon(u) $\end{document} which pointwisely converges to - \begin{document}$ \log(u) $\end{document} as \begin{document}$ \epsilon \rightarrow 0 $\end{document} . When the parameter \begin{document}$ \lambda>0 $\end{document} is small enough, the corresponding energy functional to the perturbed equation \begin{document}$ -\Delta u + g_\epsilon(u) = \lambda f(u) $\end{document} has a critical point \begin{document}$ u_\epsilon $\end{document} in \begin{document}$ H_0^1(\Omega) $\end{document} , which converges to a nontrivial nonnegative solution of the original problem as \begin{document}$ \epsilon \rightarrow 0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom