
On a curvature flow in a band domain with unbounded boundary slopes
Author(s) -
Yuan Lei,
Wei Zhao
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021115
Subject(s) - mathematics , combinatorics
This paper is devoted to an anisotropic curvature flow of the form \begin{document}$ V = A(\mathbf{n})H + B(\mathbf{n}) $\end{document} in a band domain \begin{document}$ \Omega : = [-1,1]\times {\mathbb{R}} $\end{document} , where \begin{document}$ \mathbf{n} $\end{document} , \begin{document}$ V $\end{document} and \begin{document}$ H $\end{document} denote respectively the unit normal vector, normal velocity and curvature of a graphic curve \begin{document}$ \Gamma_t $\end{document} . We require that the curve \begin{document}$ \Gamma_t $\end{document} contacts \begin{document}$ \partial \Omega $\end{document} with slopes equaling to the heights of the contact points (which corresponds to a kind of Robin boundary conditions). In spite of the unboundedness of the boundary slopes, we are able to obtain the uniform interior gradient estimates for the solutions by using the zero number argument. Furthermore, when \begin{document}$ t\to \infty $\end{document} , we show that \begin{document}$ \Gamma_t $\end{document} converges to a traveling wave with cup-shaped profile and infinite boundary slopes in the \begin{document}$ C^{2,1}_{\rm{loc}} ((-1,1)\times {\mathbb{R}}) $\end{document} -topology.