
Combined effects of singular and exponential nonlinearities in fractional Kirchhoff problems
Author(s) -
Tuhina Mukherjee,
Patrizia Pucci,
Mingqi Xiang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021111
Subject(s) - combinatorics , omega , mathematics , bounded function , arithmetic , physics , mathematical analysis , quantum mechanics
In this paper we establish the existence of at least two (weak) solutions for the following fractional Kirchhoff problem involving singular and exponential nonlinearities\begin{document}$\begin{cases}M\left(\|u\|^{{n}/{s}}\right)(-\Delta)^s_{n/s}u = \mu u^{-q}+ u^{r-1}\exp( u^{\beta})\quad\text{in } \Omega,\\u>0\qquad\text{in } \Omega,\\u = 0\qquad\text{in } \mathbb R^n \setminus{ \Omega}, \end{cases} $\end{document}where \begin{document}$ \Omega $\end{document} is a smooth bounded domain of \begin{document}$ \mathbb R^n $\end{document} , \begin{document}$ n\geq 1 $\end{document} , \begin{document}$ s\in (0,1) $\end{document} , \begin{document}$ \mu>0 $\end{document} is a real parameter, \begin{document}$ \beta <{n/(n-s)} $\end{document} and \begin{document}$ q\in (0,1) $\end{document} .The paper covers the so called degenerate Kirchhoff case andthe existence proofs rely on the Nehari manifold techniques.