Combined effects of singular and exponential nonlinearities in fractional Kirchhoff problems
Author(s) -
Tuhina Mukherjee,
Patrizia Pucci,
Mingqi Xiang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021111
Subject(s) - combinatorics , omega , mathematics , bounded function , arithmetic , physics , mathematical analysis , quantum mechanics
In this paper we establish the existence of at least two (weak) solutions for the following fractional Kirchhoff problem involving singular and exponential nonlinearities\begin{document}$\begin{cases}M\left(\|u\|^{{n}/{s}}\right)(-\Delta)^s_{n/s}u = \mu u^{-q}+ u^{r-1}\exp( u^{\beta})\quad\text{in } \Omega,\\u>0\qquad\text{in } \Omega,\\u = 0\qquad\text{in } \mathbb R^n \setminus{ \Omega}, \end{cases} $\end{document}where \begin{document}$ \Omega $\end{document} is a smooth bounded domain of \begin{document}$ \mathbb R^n $\end{document} , \begin{document}$ n\geq 1 $\end{document} , \begin{document}$ s\in (0,1) $\end{document} , \begin{document}$ \mu>0 $\end{document} is a real parameter, \begin{document}$ \beta <{n/(n-s)} $\end{document} and \begin{document}$ q\in (0,1) $\end{document} .The paper covers the so called degenerate Kirchhoff case andthe existence proofs rely on the Nehari manifold techniques.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom