z-logo
open-access-imgOpen Access
Combined effects of singular and exponential nonlinearities in fractional Kirchhoff problems
Author(s) -
Tuhina Mukherjee,
Patrizia Pucci,
Mingqi Xiang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021111
Subject(s) - combinatorics , omega , mathematics , bounded function , arithmetic , physics , mathematical analysis , quantum mechanics
In this paper we establish the existence of at least two (weak) solutions for the following fractional Kirchhoff problem involving singular and exponential nonlinearities\begin{document}$\begin{cases}M\left(\|u\|^{{n}/{s}}\right)(-\Delta)^s_{n/s}u = \mu u^{-q}+ u^{r-1}\exp( u^{\beta})\quad\text{in } \Omega,\\u>0\qquad\text{in } \Omega,\\u = 0\qquad\text{in } \mathbb R^n \setminus{ \Omega}, \end{cases} $\end{document}where \begin{document}$ \Omega $\end{document} is a smooth bounded domain of \begin{document}$ \mathbb R^n $\end{document} , \begin{document}$ n\geq 1 $\end{document} , \begin{document}$ s\in (0,1) $\end{document} , \begin{document}$ \mu>0 $\end{document} is a real parameter, \begin{document}$ \beta <{n/(n-s)} $\end{document} and \begin{document}$ q\in (0,1) $\end{document} .The paper covers the so called degenerate Kirchhoff case andthe existence proofs rely on the Nehari manifold techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here