z-logo
open-access-imgOpen Access
Upper semicontinuity of pullback attractors for non-autonomous lattice systems under singular perturbations
Author(s) -
Na Lei,
Shengfan Zhou
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021108
Subject(s) - combinatorics , order (exchange) , lattice (music) , mathematics , arithmetic , physics , finance , acoustics , economics
Consider the second order nonautonomous lattice systemswith singular perturbations\begin{document}$ \begin{equation*} \epsilon \ddot{u}_{m}+\dot{u}_{m}+(Au)_{m}+\lambda_{m}u_{m}+f_{m}(u_{j}|j\in I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k},\; \; \epsilon>0 \tag{*} \label{0} \end{equation*} $\end{document}and the first order nonautonomous lattice systems\begin{document}$ \begin{equation*} \dot{u}_{m}+(Au)_{m}+\lambda _{m}u_{m}+f_{m}(u_{j}|j∈I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k}. \tag{**} \label{00} \end{equation*} $\end{document}Under certain conditions, there are pullback attractors \begin{document}$ \{\mathcal{A}_{\epsilon }(t)\subset \ell ^{2}\times \ell ^{2}\}_{t\in \mathbb{R}} $\end{document} and \begin{document}$ \{\mathcal{A}(t)\subset \ell ^{2}\}_{t\in \mathbb{R}} $\end{document} for systems (*)and (**), respectively. In this paper, we mainly consider the uppersemicontinuity of attractors \begin{document}$ \mathcal{A}_{\epsilon }(t)\subset \ell^{2}\times \ell ^{2} $\end{document} , \begin{document}$ t\in \mathbb{R} $\end{document} , with respect to the coefficient \begin{document}$ \epsilon $\end{document} of second derivative term under Hausdorff semidistance. First, we studythe relationship between \begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document} and \begin{document}$ \mathcal{A}(t) $\end{document} when \begin{document}$ \epsilon \rightarrow 0^{+} $\end{document} . We construct a family of compact sets \begin{document}$ \mathcal{A}_{0}(t)\subset \ell ^{2}\times \ell ^{2} $\end{document} , \begin{document}$ t\in \mathbb{R} $\end{document} such that \begin{document}$ \mathcal{A}(t) $\end{document} is naturally embedded into \begin{document}$ \mathcal{A}_{0}(t) $\end{document} as the firstcomponent, and prove that \begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document} can enter anyneighborhood of \begin{document}$ \mathcal{A}_{0}(t) $\end{document} when \begin{document}$ \epsilon $\end{document} is small enough. Thenfor \begin{document}$ \epsilon _{0}>0 $\end{document} , we prove that \begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document} can enterany neighborhood of \begin{document}$ \mathcal{A}_{\epsilon _{0}}(t) $\end{document} when \begin{document}$ \epsilon\rightarrow \epsilon _{0} $\end{document} . Finally, we consider the existence andexponentially attraction of the singleton pullback attractors of systems (*)-(**).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom