
Dynamics of particles on a curve with pairwise hyper-singular repulsion
Author(s) -
Douglas P. Hardin,
Edward B. Saff,
Ruiwen Shu,
Eitan Tadmor
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021086
Subject(s) - mathematics , combinatorics
We investigate the large time behavior of \begin{document}$ N $\end{document} particles restricted to a smooth closed curve in \begin{document}$ \mathbb{R}^d $\end{document} and subject to a gradient flow with respect to Euclidean hyper-singular repulsive Riesz \begin{document}$ s $\end{document} -energy with \begin{document}$ s>1. $\end{document} We show that regardless of their initial positions, for all \begin{document}$ N $\end{document} and time \begin{document}$ t $\end{document} large, their normalized Riesz \begin{document}$ s $\end{document} -energy will be close to the \begin{document}$ N $\end{document} -point minimal possible energy. Furthermore, the distribution of such particles will be close to uniform with respect to arclength measure along the curve.