z-logo
open-access-imgOpen Access
Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space
Author(s) -
Kin Ming Hui,
Jinwan Park
Publication year - 2021
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2021085
Subject(s) - combinatorics , mathematics
For \begin{document}$ n\ge 3 $\end{document} , \begin{document}$ 0<m<\frac{n-2}{n} $\end{document} , \begin{document}$ \beta<0 $\end{document} and \begin{document}$ \alpha = \frac{2\beta}{1-m} $\end{document} , we prove the existence, uniqueness and asymptotics near the origin of the singular eternal self-similar solutions of the fast diffusion equation in \begin{document}$ (\mathbb{R}^n\setminus\{0\})\times \mathbb{R} $\end{document} of the form \begin{document}$ U_{\lambda}(x,t) = e^{-\alpha t}f_{\lambda}(e^{-\beta t}x), x\in \mathbb{R}^n\setminus\{0\}, t\in\mathbb{R}, $\end{document} where \begin{document}$ f_{\lambda} $\end{document} is a radially symmetric function satisfying\begin{document}$ \frac{n-1}{m}\Delta f^m+\alpha f+\beta x\cdot\nabla f = 0 \text{ in }\mathbb{R}^n\setminus\{0\}, $\end{document}with \begin{document}$ \underset{\substack{r\to 0}}{\lim}\frac{r^2f(r)^{1-m}}{\log r^{-1}} = \frac{2(n-1)(n-2-nm)}{|\beta|(1-m)} $\end{document} and \begin{document}$ \underset{\substack{r\to\infty}}{\lim}r^{\frac{n-2}{m}}f(r) = \lambda^{\frac{2}{1-m}-\frac{n-2}{m}} $\end{document} , for some constant \begin{document}$ \lambda>0 $\end{document} . As a consequence we prove the existence and uniqueness of solutions of Cauchy problem for the fast diffusion equation \begin{document}$ u_t = \frac{n-1}{m}\Delta u^m $\end{document} in \begin{document}$ (\mathbb{R}^n\setminus\{0\})\times (0,\infty) $\end{document} with initial value \begin{document}$ u_0 $\end{document} satisfying \begin{document}$ f_{\lambda_1}(x)\le u_0(x)\le f_{\lambda_2}(x) $\end{document} , \begin{document}$ \forall x\in\mathbb{R}^n\setminus\{0\} $\end{document} , such that the solution \begin{document}$ u $\end{document} satisfies \begin{document}$ U_{\lambda_1}(x,t)\le u(x,t)\le U_{\lambda_2}(x,t) $\end{document} , \begin{document}$ \forall x\in \mathbb{R}^n\setminus\{0\}, t\ge 0 $\end{document} , for some constants \begin{document}$ \lambda_1>\lambda_2>0 $\end{document} . We also prove the asymptotic large time behaviour of such singular solution \begin{document}$ u $\end{document} when \begin{document}$ n = 3,4 $\end{document} and \begin{document}$ \frac{n-2}{n+2}\le m<\frac{n-2}{n} $\end{document} holds. Asymptotic large time behaviour of such singular solution \begin{document}$ u $\end{document} is also obtained when \begin{document}$ 3\le n<8 $\end{document} , \begin{document}$ 1-\sqrt{2/n}\le m<\min\left(\frac{2(n-2)}{3n},\frac{n-2}{n+2}\right) $\end{document} , and \begin{document}$ u(x,t) $\end{document} is radially symmetric in \begin{document}$ x\in\mathbb{R}^n\setminus\{0\} $\end{document} for any \begin{document}$ t>0 $\end{document} under appropriate conditions on the initial value \begin{document}$ u_0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom