z-logo
open-access-imgOpen Access
The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos
Author(s) -
Radosław Kurek,
Paweł Lubowiecki,
Henryk Żołądek
Publication year - 2018
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2018079
Subject(s) - homoclinic orbit , saddle , separatrix , perturbation (astronomy) , mathematics , saddle point , chaotic , euler's formula , physics , invariant (physics) , equilibrium point , mathematical analysis , hyperbolic equilibrium point , homoclinic bifurcation , mathematical physics , classical mechanics , bifurcation , geometry , differential equation , computer science , quantum mechanics , nonlinear system , mathematical optimization , artificial intelligence , hyperbolic manifold , hyperbolic function , plasma

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom