Unbounded perturbations of the generator domain
Author(s) -
Saïd Hadd,
Rosanna Manzo,
Abdelaziz Rhandi
Publication year - 2014
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2015.35.703
Subject(s) - generator (circuit theory) , domain (mathematical analysis) , semigroup , operator (biology) , embedding , banach space , physics , boundary (topology) , combinatorics , linear operators , mathematical physics , discrete mathematics , pure mathematics , mathematical analysis , mathematics , quantum mechanics , computer science , artificial intelligence , power (physics) , biochemistry , chemistry , repressor , transcription factor , bounded function , gene
Let X, U and Z be Banach spaces such that Z in X (with continuous and dense embedding), L : Z ->X be a closed linear operator and consider closed linear operators G, M : Z -> U. Putting conditions on G and M we show that the operator A = L with domain D(A) ={z∈Z: Gz=Mz} generates a C0- semigroup on X. Moreover, we give a variation of constants formula for the solution of an inhomogeneous problem.\ud \udSeveral examples will be given, in particular heat equation with distributed unbounded delay at the boundary condition
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom