Topological entropy by unit length for the Ginzburg-Landau equation on the line
Author(s) -
Nadir Maaroufi
Publication year - 2013
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2014.34.647
Subject(s) - topological entropy , topological entropy in physics , mathematics , attractor , bounded function , entropy (arrow of time) , unit (ring theory) , unit sphere , topology (electrical circuits) , hilbert space , fractal dimension , fractal , topological quantum number , physics , pure mathematics , combinatorics , mathematical analysis , quantum mechanics , mathematics education
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom