z-logo
open-access-imgOpen Access
Wave propagation in random waveguides
Author(s) -
Chang-Yeol Jung,
Alex Mahalov
Publication year - 2010
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2010.28.147
Subject(s) - legendre polynomials , waveguide , variance (accounting) , polynomial chaos , random element , statistical physics , stochastic process , coupling (piping) , focus (optics) , mathematics , random variable , physics , mathematical analysis , optics , statistics , monte carlo method , materials science , accounting , business , metallurgy
We study uncertainty bounds and statistics of wave solutions through a random waveguide which possesses certain random inhomogeneities. The waveguide is composed of several homogeneous media with random interfaces. The main focus is on two homogeneous media which are layered randomly and periodically in space. Solutions of stochastic and deterministic problems are compared. The waveguide media parameters pertaining to the latter are the averaged values of the random parameters of the former. We investigate the eigen modes coupling due to random inhomogeneities in media, i.e. random changes of the media parameters. We present an efficient numerical method via Legendre Polynomial Chaos expansion for obtaining output statistics including mean, variance and probability distribution of the wave solutions. Based on the statistical studies, we present uncertainty bounds and quantify the robustness of the solutions with respect to random changes of interfaces.open2

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom