A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential
Author(s) -
Lucio Boccardo,
Luigi Orsina,
Ireneo Peral
Publication year - 2006
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2006.16.513
Subject(s) - nabla symbol , omega , bounded function , domain (mathematical analysis) , order (exchange) , mathematics , zero (linguistics) , pure mathematics , combinatorics , mathematical analysis , physics , philosophy , quantum mechanics , linguistics , finance , economics
\begin{abstract} We study the effect of a zero order term on existence and optimal summability of solutions to the elliptic problem $$ -\text{div}( M(x)\nabla u)- a\dfrac{u}{|x|^2}=f \hbox{ in } \Omega\,, \qquad u=0 \hbox{ on } \partial \Omega\,, $$ with respect to the summability of $f$ and the value of the parameter $a$. Here $\Omega$ is a bounded domain in $\mathbb{R}^N$ containing the origin. \end{abstract
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom