z-logo
open-access-imgOpen Access
The effect of the weight function on the number of nodal solutions of the Kirchhoff-type equations in high dimensions
Author(s) -
He Zhang,
Haibo Chen
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022069
Subject(s) - combinatorics , nabla symbol , mathematics , physics , omega , quantum mechanics
In this paper, we consider the multiplicity of nodal solutions for the following Kirchhoff type equations:\begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} -\varepsilon^2M\left(\varepsilon^{2-N}||\nabla u||^2_{L^2}\right)\Delta u+u = f\left(x\right)|u|^{p-2}u,\ \text{in}\ \mathbb{R}^N,\\ u\in H^1(\mathbb{R}^N), \end{array} \right. \end{equation*} $\end{document}where \begin{document}$ N\geq 4 $\end{document} , \begin{document}$ \varepsilon>0 $\end{document} is a small parameter, \begin{document}$ M\left(t\right) = at+b\left(a,b>0\right) $\end{document} and \begin{document}$ 2<p<2^* = \frac{2N}{N-2} $\end{document} . We assume that the weight function \begin{document}$ f\in C\left(\mathbb{R}^N,\mathbb{R}^+\right) $\end{document} has \begin{document}$ k $\end{document} maximum points in \begin{document}$ \mathbb{R}^N $\end{document} . By using a novel constraint approach as well as the barycenter map, \begin{document}$ k^2 $\end{document} nodal solutions are obtained when \begin{document}$ N\geq4 $\end{document} for \begin{document}$ \varepsilon,a $\end{document} sufficiently small.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom