z-logo
open-access-imgOpen Access
Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double potentials
Author(s) -
Zhi-Guo Wu,
W. Guan,
Da-Bin Wang
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022058
Subject(s) - mathematics , combinatorics , type (biology) , nabla symbol , physics , omega , quantum mechanics , ecology , biology
We are concerned with sign-changing solutions and their concentration behaviors of singularly perturbed Kirchhoff problem\begin{document}$ \begin{equation*} -(\varepsilon^{2}a+ \varepsilon b\int _{\mathbb{R}^{3}}|\nabla v|^{2}dx)\Delta v+V(x)v = P(x)f(v)\; \; {\rm{in}}\; \mathbb{R}^{3}, \end{equation*} $\end{document}where \begin{document}$ \varepsilon $\end{document} is a small positive parameter, \begin{document}$ a, b>0 $\end{document} and \begin{document}$ V, P\in C^{1}(\mathbb{R}^{3}, \mathbb{R}) $\end{document} . Without using any non-degeneracy conditions, we obtain multiple localized sign-changing solutions of higher topological type for this problem. Furthermore, we also determine a concrete set as the concentration position of these sign-changing solutions. The main methods we use are penalization techniques and the method of invariant sets of descending flow. It is notice that, when nonlinear potential \begin{document}$ P $\end{document} is a positive constant, our result generalizes the result obtained in [ 5 ] to Kirchhoff problem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom