
Energy considerations for nonlinear equatorial water waves
Author(s) -
David Henry
Publication year - 2022
Publication title -
communications on pure and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022057
Subject(s) - kinetic energy , conservative vector field , nonlinear system , energy (signal processing) , physics , negative energy , mathematical analysis , mechanics , classical mechanics , quantum electrodynamics , mathematics , computational physics , quantum mechanics , compressibility
In this article we consider the excess kinetic and potential energies for exact nonlinear equatorial water waves. An investigation of linear waves establishes that the excess kinetic energy density is always negative, whereas the excess potential energy density is always positive, for periodic travelling irrotational water waves in the steady reference frame. For negative wavespeeds, we prove that similar inequalities must also hold for nonlinear wave solutions. Characterisations of the various excess energy densities as integrals along the wave surface profile are also derived.