z-logo
open-access-imgOpen Access
Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities
Author(s) -
Rakesh Arora
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022056
Subject(s) - combinatorics , mathematics , bounded function , omega , physics , mathematical analysis , quantum mechanics
This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of \begin{document}$ p $\end{document} - \begin{document}$ q $\end{document} type and singular nonlinearities\begin{document}$\left\{\begin{alignedat}{2}{} - \mathcal{L}_{p,q} u& {} = \lambda \frac{f(u)}{u^\gamma}, \ u>0&& \quad\mbox{ in } \, \Omega, \\u & {} = 0&& \quad\mbox{ on } \partial\Omega, \end{alignedat}\right. $\end{document}where \begin{document}$ \Omega $\end{document} is a bounded domain in \begin{document}$ \mathbb{R}^N $\end{document} with \begin{document}$ C^2 $\end{document} boundary, \begin{document}$ N \geq 1 $\end{document} , \begin{document}$ \lambda >0 $\end{document} is a real parameter,\begin{document}$ \mathcal{L}_{p,q} u : = {\rm{div}}(|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u), $\end{document}\begin{document}$ 1<p<q< \infty $\end{document} , \begin{document}$ \gamma \in (0,1) $\end{document} , and \begin{document}$ f $\end{document} is a continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs of strict sub and super solution, and using fixed point theorems by Amann [ 1 ], we prove existence of three positive solutions in the positive cone of \begin{document}$ C_\delta(\overline{\Omega}) $\end{document} and in a certain range of \begin{document}$ \lambda $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom