Liouville type theorem for Hartree-Fock Equation on half space
Author(s) -
Xiaomei Chen,
Xiaohui Yu
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022050
Subject(s) - bar (unit) , type (biology) , combinatorics , physics , space (punctuation) , mathematics , ecology , linguistics , philosophy , meteorology , biology
In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space\begin{document}$ \begin{align*} \begin{cases} - \Delta {u_i}(y) = \sum\limits_{j = 1}^n {{\int _{\partial \mathbb{R}_ + ^N}}} \frac{{{u_j}(\bar x, 0){F_1}({u_j}(\bar x, 0))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}d\bar x{f_2}({u_i}(y)) \\ \qquad \qquad \qquad + \sum\limits_{j = 1}^n {{\int _{\partial \mathbb{R}_ + ^N}}} \frac{{{u_j}(\bar x, 0){F_2}({u_i}(\bar x, 0))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}d\bar x{f_1}({u_j}(y)), \ y \in \mathbb{R}_ + ^N, \hfill \\ \frac{{\partial {u_i}}} {{\partial \nu }}(\bar x, 0) = \sum\limits_{j = 1}^n {{\int _{ \mathbb{R}_ + ^N}}} \frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}dy{g_2}({u_i}(\bar x, 0)) \\ \qquad \qquad \qquad + \sum\limits_{j = 1}^n {{\int _{ \mathbb{R}_ + ^N}}} \frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}dy{g_1}({u_j}(\bar x, 0)), \quad \quad(\bar x, 0) \in \partial \mathbb{R}_ + ^N, \end{cases} \end{align*} $\end{document}where \begin{document}$ \mathbb{R}_+^N = \{x\in{\mathbb{R}^N}: x_N > 0\}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $\end{document} are some nonlinear functions. Under some assumptions on the nonlinear functions \begin{document}$ F, G, f, g $\end{document} , we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom