z-logo
open-access-imgOpen Access
Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials
Author(s) -
Xiaoming An,
Xian Yang
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022038
Subject(s) - combinatorics , mathematics , arithmetic , physics
This paper deals with the following fractional magnetic Schrödinger equations\begin{document}$ \varepsilon^{2s}(-\Delta)^s_{A/\varepsilon} u +V(x)u = |u|^{p-2}u, \ x\in{\mathbb R}^N, $\end{document}where \begin{document}$ \varepsilon>0 $\end{document} is a parameter, \begin{document}$ s\in(0,1) $\end{document} , \begin{document}$ N\geq3 $\end{document} , \begin{document}$ 2+2s/(N-2s)<p<2_s^*: = 2N/(N-2s) $\end{document} , \begin{document}$ A\in C^{0,\alpha}({\mathbb R}^N,{\mathbb R}^N) $\end{document} with \begin{document}$ \alpha\in(0,1] $\end{document} is a magnetic field, \begin{document}$ V:{\mathbb R}^N\to{\mathbb R} $\end{document} is a nonnegative continuous potential. By variational methods and penalized idea, we show that the problem has a family of solutions concentrating at a local minimum of \begin{document}$ V $\end{document} as \begin{document}$ \varepsilon\to 0 $\end{document} . There is no restriction on the decay rates of \begin{document}$ V $\end{document} . Especially, \begin{document}$ V $\end{document} can be compactly supported. The appearance of \begin{document}$ A $\end{document} and the nonlocal of \begin{document}$ (-\Delta)^s $\end{document} makes the proof more difficult than that in [ 7 ], which considered the case \begin{document}$ A\equiv 0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom