
Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity
Author(s) -
Yuxia Guo,
Shaolong Peng
Publication year - 2022
Publication title -
communications on pure and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022037
Subject(s) - monotonic function , nabla symbol , mathematics , bounded function , combinatorics , physics , omega , mathematical analysis , quantum mechanics
In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities:\begin{document}$ (-\Delta+m^{2})^{s}u = a(x_1)f\left(u,\nabla u\right),\quad {\rm{in}} \,\,\mathbb R^{N}, $\end{document}where \begin{document}$ s\in(0,1) $\end{document} , mass \begin{document}$ m>0 $\end{document} and \begin{document}$ a $\end{document} is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.