z-logo
open-access-imgOpen Access
Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity
Author(s) -
Yuxia Guo,
Shaolong Peng
Publication year - 2022
Publication title -
communications on pure and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022037
Subject(s) - monotonic function , nabla symbol , mathematics , bounded function , combinatorics , physics , omega , mathematical analysis , quantum mechanics
In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities:\begin{document}$ (-\Delta+m^{2})^{s}u = a(x_1)f\left(u,\nabla u\right),\quad {\rm{in}} \,\,\mathbb R^{N}, $\end{document}where \begin{document}$ s\in(0,1) $\end{document} , mass \begin{document}$ m>0 $\end{document} and \begin{document}$ a $\end{document} is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here