z-logo
open-access-imgOpen Access
On a macrophage and tumor cell chemotaxis system with both paracrine and autocrine loops
Author(s) -
Li Xie,
Shigui Ruan
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022025
Subject(s) - nabla symbol , omega , autocrine signalling , combinatorics , paracrine signalling , physics , mathematics , medicine , receptor , quantum mechanics
In this paper, we consider a homogeneous Neumann initial-boundary value problem (IBVP) for the following two-species and two-stimuli chemotaxis model with both paracrine and autocrine loops:\begin{document}$ \begin{equation*} \label{IBVP} \left\{ \begin{aligned} &u_t = \nabla\cdot(D_1(u)\nabla u-S_1(u)\nabla v), &\qquad x\in\Omega, \, t>0, \\ & \tau_1 v_t = \Delta v- v+w, &\qquad x\in\Omega, \, t>0, \\ &w_t = \nabla\cdot(D_2(w)\nabla w-S_2(w)\nabla z-S_3(w)\nabla v), &\qquad x\in\Omega, \, t>0, \\ & \tau_2 z_t = \Delta z- z+ u, &\qquad x\in\Omega, \, t>0, \end{aligned} \right. \end{equation*} $\end{document}where \begin{document}$ u(t, x) $\end{document} and \begin{document}$ w(t, x) $\end{document} denote the density of macrophages and tumor cells at time \begin{document}$ t $\end{document} and location \begin{document}$ x\in \Omega, $\end{document} respectively, \begin{document}$ v(t, x) $\end{document} and \begin{document}$ z(t, x) $\end{document} represent the concentration of colony stimulating factor 1 (CSF-1) secreted by the tumor cells and epidermal growth factor (EGF) secreted by macrophages at time \begin{document}$ t $\end{document} and location \begin{document}$ x\in \Omega, $\end{document} respectively. \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} is a bounded region with smooth boundary, \begin{document}$ \tau_i\ge 0 \; (i = 1, 2) $\end{document} , \begin{document}$ D_i(s)\ge d_i(s+1)^{m_i-1} $\end{document} with parameters \begin{document}$ m_i\ge 1 \; (i = 1, 2) $\end{document} and \begin{document}$ S_j(s)\lesssim (s+1)^{q_j} $\end{document} with parameters \begin{document}$ q_j>0 \;(j = 1, 2, 3) $\end{document} . For the case without autocrine loop (i.e., \begin{document}$ S_3(w) = 0 $\end{document} ), it is shown that when \begin{document}$ q_j\le 1 \; (j = 1, 2) $\end{document} , if one of \begin{document}$ q_j $\end{document} is smaller than one or one of \begin{document}$ m_i $\end{document} is larger than one, then the IBVP has a global classical solution which is uniformly bounded. Moreover, when \begin{document}$ m_1 = m_2 = q_1 = q_2 = 1 $\end{document} , an inequality involving the product \begin{document}$ d_1d_2 $\end{document} and the product of the two species' initial mass is obtained which guarantees the existence of global bounded classical solutions. More specifically, it allows one of \begin{document}$ d_i $\end{document} to be small or one of the species initial mass to be large. For the case with autocrine loop (i.e \begin{document}$ S_3(w)\ne 0 $\end{document} ), similar results hold only if \begin{document}$ q_3<1 $\end{document} . If \begin{document}$ q_3 = 1 $\end{document} , solutions to the IBVP exist globally only when \begin{document}$ d_2 $\end{document} is suitably large or the mass of species \begin{document}$ w $\end{document} is suitably small.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom