z-logo
open-access-imgOpen Access
Schauder type estimates for degenerate Kolmogorov equations with Dini continuous coefficients
Author(s) -
Sergio Polidoro,
Annalaura Rebucci,
Bianca Stroffolini
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022023
Subject(s) - combinatorics , mathematics , order (exchange) , arithmetic , economics , finance
We study the regularity properties of the second order linear operator in \begin{document}$ {{\mathbb {R}}}^{N+1} $\end{document} :\begin{document}$ \begin{equation*} \mathscr{L} u : = \sum\limits_{j,k = 1}^{m} a_{jk}\partial_{x_j x_k}^2 u + \sum\limits_{j,k = 1}^{N} b_{jk}x_k \partial_{x_j} u - \partial_t u, \end{equation*} $\end{document}where \begin{document}$ A = \left( a_{jk} \right)_{j,k = 1, \dots, m}, B = \left( b_{jk} \right)_{j,k = 1, \dots, N} $\end{document} are real valued matrices with constant coefficients, with \begin{document}$ A $\end{document} symmetric and strictly positive. We prove that, if the operator \begin{document}$ {\mathscr{L}} $\end{document} satisfies Hörmander's hypoellipticity condition, and \begin{document}$ f $\end{document} is a Dini continuous function, then the second order derivatives of the solution \begin{document}$ u $\end{document} to the equation \begin{document}$ {\mathscr{L}} u = f $\end{document} are Dini continuous functions as well. We also consider the case of Dini continuous coefficients \begin{document}$ a_{jk} $\end{document} 's. A key step in our proof is a Taylor formula for classical solutions to \begin{document}$ {\mathscr{L}} u = f $\end{document} that we establish under minimal regularity assumptions on \begin{document}$ u $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom