z-logo
open-access-imgOpen Access
On the critical Schrödinger-Poisson system with $ p $-Laplacian
Author(s) -
Yao Du,
Jiabao Su,
Cong Wang
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022020
Subject(s) - nabla symbol , combinatorics , physics , omega , mathematics , quantum mechanics
In this paper we consider the critical quasilinear Schrödinger-Poisson system\begin{document}$ \begin{eqnarray*} \left \{\begin{array}{ll} -\Delta_p u+|u|^{p-2}u+\mu\phi |u|^{p-2}u = \lambda|u|^{q-2}u+|u|^{p^*-2}u,&\mathrm{in} \ \mathbb{R}^3,\\ -\Delta \phi = |u|^p, &\mathrm{in}\ \mathbb{R}^3, \end{array} \right. \end{eqnarray*} $\end{document}where \begin{document}$ \frac{3}{2}<p<3 $\end{document} , \begin{document}$ \Delta_p u = \hbox{div}(|\nabla u|^{p-2}\nabla u) $\end{document} , \begin{document}$ p<q<p^*: = \frac{3p}{3-p} $\end{document} and \begin{document}$ \mu,\lambda>0 $\end{document} . Based upon the variational approach, the ground state solutions and the nontrivial solutions are obtained depending on the parameters \begin{document}$ q $\end{document} , \begin{document}$ \mu $\end{document} and \begin{document}$ \lambda $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom