Open Access
A non-convex non-smooth bi-level parameter learning for impulse and Gaussian noise mixture removing
Author(s) -
Mourad Nachaoui,
Lekbir Afraites,
Aissam Hadri,
Amine Laghrib
Publication year - 2022
Publication title -
communications on pure and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022018
Subject(s) - regular polygon , mathematics , norm (philosophy) , combinatorics , convex optimization , algorithm , discrete mathematics , geometry , political science , law
This paper introduce a novel optimization procedure to reduce mixture of Gaussian and impulse noise from images. This technique exploits a non-convex PDE-constrained characterized by a fractional-order operator. The used non-convex term facilitated the impulse component approximation controlled by a spatial parameter \begin{document}$ \gamma $\end{document} . A non-convex and non-smooth bi-level optimization framework with a modified projected gradient algorithm is then proposed in order to learn the parameter \begin{document}$ \gamma $\end{document} . Denoising tests confirm that the non-convex term and learned parameter \begin{document}$ \gamma $\end{document} lead in general to an improved reconstruction when compared to results of convex norm and manual parameter \begin{document}$ \lambda $\end{document} choice.