z-logo
open-access-imgOpen Access
Concentration of bound states for fractional Schrödinger-Poisson system via penalization methods
Author(s) -
Kaimin Teng,
Xian Wu
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022014
Subject(s) - combinatorics , mathematics , physics
In this paper, we study the following fractional Schrödinger-Poiss-on system\begin{document}$ \begin{equation*} \begin{cases}\varepsilon^{2s}(-\Delta)^su+V(x)u+\phi u = g(u) & \hbox{in $\mathbb{R}^3$,} \\ \varepsilon^{2t}(-\Delta)^t\phi = u^2,\,\, u>0& \hbox{in $\mathbb{R}^3$,} \end{cases} \end{equation*} $\end{document}where \begin{document}$ s,t\in(0,1) $\end{document} , \begin{document}$ \varepsilon>0 $\end{document} is a small parameter. Under some local assumptions on \begin{document}$ V(x) $\end{document} and suitable assumptions on the nonlinearity \begin{document}$ g $\end{document} , we construct a family of positive solutions \begin{document}$ u_{\varepsilon}\in H_{\varepsilon} $\end{document} which concentrate around the global minima of \begin{document}$ V(x) $\end{document} as \begin{document}$ \varepsilon\rightarrow0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom