z-logo
open-access-imgOpen Access
Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type
Author(s) -
Die Hu,
Xianhua Tang,
Qi Zhang
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022010
Subject(s) - nabla symbol , combinatorics , type (biology) , mathematics , physics , arithmetic , omega , quantum mechanics , ecology , biology
In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:\begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$\end{document}where \begin{document}$ b>0 $\end{document} is a parameter, \begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document} , \begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document} and \begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document} . Under some "Berestycki-Lions type assumptions" on the nonlinearity \begin{document}$ f $\end{document} which are almost necessary, we prove that problem \begin{document}$ (\rm P) $\end{document} has a nontrivial solution \begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document} such that \begin{document}$ \bar{v} = G(\bar{u}) $\end{document} is a ground state solution of the following problem\begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$\end{document}where \begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document} . We also give a minimax characterization for the ground state solution \begin{document}$ \bar{v} $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom