Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO anti-symmetric part in NTA domains
Author(s) -
Sibei Yang,
Dachun Yang,
Wenxian Ma
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022006
Subject(s) - mathematics , bounded function , combinatorics , order (exchange) , mathematical analysis , economics , finance
Let \begin{document}$ n\ge2 $\end{document} and \begin{document}$ \Omega\subset\mathbb{R}^n $\end{document} be a bounded NTA domain. In this article, the authors study (weighted) global regularity estimates for Neumann boundary value problems of second-order elliptic equations of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in \begin{document}$ \Omega $\end{document} . Precisely, for any given \begin{document}$ p\in(2,\infty) $\end{document} , via a weak reverse Hölder inequality with the exponent \begin{document}$ p $\end{document} , the authors give a sufficient condition for the global \begin{document}$ W^{1,p} $\end{document} estimate and the global weighted \begin{document}$ W^{1,q} $\end{document} estimate, with \begin{document}$ q\in[2,p] $\end{document} and some Muckenhoupt weights, of solutions to Neumann boundary value problems in \begin{document}$ \Omega $\end{document} . As applications, the authors further obtain global regularity estimates for solutions to Neumann boundary value problems of second-order elliptic equations of divergence form with coefficients consisting of both a small \begin{document}$ \mathrm{BMO} $\end{document} symmetric part and a small \begin{document}$ \mathrm{BMO} $\end{document} anti-symmetric part, respectively, in bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, \begin{document}$ C^1 $\end{document} domains, or (semi-)convex domains, in weighted Lebesgue spaces. The results given in this article improve the known results by weakening the assumption on the coefficient matrix.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom