z-logo
open-access-imgOpen Access
Global generalized solutions of a haptotaxis model describing cancer cells invasion and metastatic spread
Author(s) -
Meng Liu,
Yuxiang Li
Publication year - 2022
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2022004
Subject(s) - nabla symbol , combinatorics , omega , homogeneous , physics , domain (mathematical analysis) , bounded function , mathematics , mathematical analysis , quantum mechanics
In this paper, we consider the following haptotaxis model describing cancer cells invasion and metastatic spread\begin{document}$\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{l}}{{u_t} = \Delta u - \chi \nabla \cdot (u\nabla w),}&{x \in \Omega ,\;t > 0,}\\{{v_t} = {d_v}\Delta v - \xi \nabla \cdot (v\nabla w),}&{x \in \Omega ,\;t > 0,}\\{{m_t} = {d_m}\Delta m + u - m,}&{x \in \Omega ,\;t > 0,}\\{{w_t} = - \left( {{\gamma _1}u + m} \right)w,}&{x \in \Omega ,\;t > 0,}\end{array}} \right.}&{(0.1)}\end{array}$\end{document}where \begin{document}$ \Omega\subset \mathbb{R}^3 $\end{document} is a bounded domain with smooth boundary and the parameters \begin{document}$ \chi, \xi, d_{v}, d_{m},\gamma_{1}>0 $\end{document} . Under homogeneous boundary conditions of Neumann type for \begin{document}$ u $\end{document} , \begin{document}$ v $\end{document} , \begin{document}$ m $\end{document} and \begin{document}$ w $\end{document} , it is proved that, for suitable smooth initial data \begin{document}$ (u_0, v_0, m_0, w_0) $\end{document} , the corresponding Neumann initial-boundary value problem possesses a global generalized solution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom