Radial symmetry of nonnegative solutions for nonlinear integral systems
Author(s) -
Zhenjie Li,
Chunqin Zhou
Publication year - 2021
Publication title -
communications on pure andamp applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.077
H-Index - 42
eISSN - 1553-5258
pISSN - 1534-0392
DOI - 10.3934/cpaa.2021201
Subject(s) - mathematics , combinatorics , monotone polygon , arithmetic , geometry
In this paper, we investigate the nonnegative solutions of the nonlinear singular integral system\begin{document}$ \begin{equation} \left\{ \begin{array}{lll} u_i(x) = \int_{\mathbb{R}^n}\frac{1}{|x-y|^{n-\alpha}|y|^{a_i}}f_i(u(y))dy,\quad x\in\mathbb{R}^n,\quad i = 1,2\cdots,m,\\ 0<\alpha<n,\quad u(x) = (u_1(x),\cdots,u_m(x)),\nonumber \end{array}\right. \end{equation} $\end{document}where \begin{document}$ 0<a_i/2<\alpha $\end{document} , \begin{document}$ f_i(u) $\end{document} , \begin{document}$ 1\leq i\leq m $\end{document} , are real-valued functions, nonnegative and monotone nondecreasing with respect to the independent variables \begin{document}$ u_1 $\end{document} , \begin{document}$ u_2 $\end{document} , \begin{document}$ \cdots $\end{document} , \begin{document}$ u_m $\end{document} . By the method of moving planes in integral forms, we show that the nonnegative solution \begin{document}$ u = (u_1,u_2,\cdots,u_m) $\end{document} is radially symmetric when \begin{document}$ f_i $\end{document} satisfies some monotonicity condition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom